Learning Image Conditioned Label Space for Multilabel Classification
نویسندگان
چکیده
This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visualsemantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an imagedependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast to conventional CNN models that learn an image representation (i.e. the image embedding vector), the developed model learns a mapping (i.e. a transformation matrix) from an image in an attempt to differentiate between its relevant and irrelevant labels. Despite the conceptual simplicity of our approach, experimental results on a public benchmark dataset demonstrate that the proposed model achieves state-of-the-art performance while using fewer training images than other multilabel classification methods.
منابع مشابه
Multilabel Classification with Principal Label Space Transformation
We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular va...
متن کاملRecurrent Attentional Reinforcement Learning for Multi-label Image Recognition
Recognizing multiple labels of images is a fundamental but challenging task in computer vision, and remarkable progress has been attained by localizing semantic-aware image regions and predicting their labels with deep convolutional neural networks. The step of hypothesis regions (region proposals) localization in these existing multi-label image recognition pipelines, however, usually takes re...
متن کاملBi-directional Representation Learning for Multi-label Classification
Multi-label classification is a central problem in many application domains. In this paper, we present a novel supervised bi-directional model that learns a low-dimensional mid-level representation for multilabel classification. Unlike traditional multi-label learning methods which identify intermediate representations from either the input space or the output space but not both, the mid-level ...
متن کاملMulti-topic Text Categorization Based on Ranking Approach
This paper is devoted to the multi-topic (multilabel) text classification problem. We propose two methods for reduction from ranking to the multi-label case. Unlike existing multi-label classification methods based on reduction from ranking problem, where the complex classification (threshold) function is being defined on the input feature space, in our approach we propose the construction of s...
متن کاملMulti-label Classification: A Comparative Study on Threshold Selection Methods
Dealing with multiple labels is a supervised learning problem of increasing importance. However, in some tasks, certain learning algorithms produce a confidence score vector for each label that needs to be classified as relevant or irrelevant. More importantly, multi-label models are learnt in training conditions called operating conditions, which most likely change in other contexts. In this w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07460 شماره
صفحات -
تاریخ انتشار 2018